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Please send any questions/comments/corrections to hhao@berkeley.edu.

1 ODE (Ordinary Differential Equation) Basics

A (ordinary) differential equation (ODE) relates the derivatives of a function y to y. In
these notes, y will by default be a function of t (representing “time”), and we will take
derivatives with respect to t, unless otherwise mentioned (the other common choices are y
as a function of x, or x as a function of t). Any function appearing in an ODE will be
continuous unless otherwise stated, but usually you can assume that you can take as many
derivatives as necessary.

When we say we want to solve an ODE, we need to provide all possible solutions, not
just one. Usually, ODEs will have a whole family of solutions, since the derivatives present
do not “see” constants (just like how f(x) and f(x) + C have the same derivative for any
constant C). For example, the most basic ODE y′ = y has solutions y(t) = Cet for any
constant C.

As another example, the ODE
y′ = y2

has solutions y(t) = 1
C−t for any constant C, but it also has a “trivial solution” y ≡ 0 (by

y ≡ c we mean that the function y(t) = c for all t), which must be written down as well.
Sometimes the ODE also comes with an initial condition (or conditions) that our solution
must satisfy, which turns it into an initial-value problem (IVP). For instance, if we impose
the condition y(0) = 0 on the above ODE, our solutions are now only y ≡ 0 and y(t) = 1

1−t .

Definition 1.1. The order of an ODE (or IVP) is the highest derivative that appears in
the equation.

For instance, the ODE y′′ + t2y = (y′)5 has order 2.
We can also have systems of ODEs, which are simply multiple ODEs that must be

satisfied simultaneously. For example, we could have a system

x′ = x+ y − 2, y′ = x2y.

Definition 1.2. An equilibrium solution to an ODE y′ = f(t, y) is a constant solution.
Similarly, an equilibrium solution so a system of ODEs is a solution in which all solution
functions are constants.

Example 1.3. In the above system

x′ = x+ y − 2, y′ = x2y,

the equilibrium solutions are obtained when x(t) and y(t) are constant functions, so x′ =
y′ = 0. So we need to solve 0 = x + y − 2, 0 = x2y for constants x and y. The equilibrium
solutions are (2, 0) and (0, 2).
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To graphically represent an ODE y′ = f(t, y), we can draw a slope field or direction field.
This is done by drawing a short line segment with slope f(t, y) at each point (t, y). We can
then picture a sample solution to the ODE by tracing along the line segments in the slope
field. Below is an example taken from the book with the ODE y′ = x+ y:

There’s not much more to say about slope fields.

1.1 Numerical Solutions

We are often not able to exactly solve an ODE. However, Euler’s method gives us a way to
approximate values of the solution function of first-order initial value problems, using the
idea of linear approximations.

Here is the idea: suppose we have the ODE y′ = f(t, y) with initial condition y(t0) = y0.
Fix a step size h, which we will use in our linear appoximation. Then for n ≥ 1, recursively
define

tn := tn−1 + h, yn := yn−1 + hf(tn−1, yn−1).

In other words, to obtain the nth approximation yn of y(tn) = y(t0 + nh) from the n− 1-st
approximation yn−1 of y(tn−1), we approximate the derivative of y at tn−1 by plugging in
f(tn−1, yn−1). We then use a linear approximation at tn−1: supposing that the function y goes
through (tn−1, yn−1) with slope f(tn−1, yn−1) at that point, we approximate y(tn−1 + h) =
y(tn) to be y(tn−1) + hf(tn−1, yn−1) ≈ yn−1 + hf(tn−1, yn−1). The point is that we use the
first-order ODE to iterate a linear approximation over and over.
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Example 1.4. Consider the ODE y′ = x+ y with initial condition y(0) = 1. Let’s approxi-
mate y(1) with step size h = 0.5. The approximation for y(0.5) is

y(0.5) ≈ y0 + h(t0 + y0) = 1 + 0.5 · (0 + 1) = 1.5.

So we have y1 = 1.5. Continuing on, the approximation for y(1) is

y(1) ≈ y1 + h(t1 + y1) = 1.5 + 0.5 · (0.5 + 1.5) = 2.5.

2 First-Order ODEs

There are two types of first-order ODEs that you should know how to solve explicitly. The
first type is the separable equation

y′ = f(y)g(t), (1)

where f and g are continuous functions. In other words, the stuff appearing on the right-
hand side of the ODE (after isolating y′) can be factored as a function of t and a function
of y (where of course y depends on t).

The general method to solve separable ODEs is as follows. Assuming f is never 0, choose
a function h of y such that h′(y) = 1

f(y)
(here the derivative of h is taken with respect to y).

Then if y(t) satisfies Equation 1,

d

dt
h(y(t)) = h′(y(t))y′(t) =

1

f(y)
f(y)g(t) = g(t),

so that

h(y(t)) =

∫
g(t)dt+ C ⇒ y(t) = h−1

(∫
g(t)dt+ C

)
.

One can check that y(t) of the above form indeed satisfy the ODE (1), so this gives our
general solution. If there is an initial condition, that will determine the value of C.

In practice, separation of varables is done using a notational convenience: with Equation
1 as above, we write

dy

dt
= f(y)g(t)⇒ 1

f(y)
dy = g(t)dt,

integrate both sides (remembering to add in a constant of integation +C after we integrate
g(t)dt), and then clean up the result. Here is an example:

Example 2.1. Consider the IVP y′ = t(1 + y2), y(0) = 1. This is separable, and using our
notational shorthand, we can write

1

1 + y2
dy = tdt.
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Integrating both sides, we get arctan(y) = t2/2 + C, so that the general solution is

y(t) = tan

(
t2

2
+ C

)
.

The initial condition y(0) = 1 gives 1 = tan(C), so that C = π
4

and the solution to the IVP
is

y(t) = tan

(
t2

2
+
π

4

)
.

Note that C could have been π
4

+ kπ for any integer k, but this gives the same function y(t)
due to the periodicity of tan.

The second type of first-order ODE that you can solve explicitly is the linear ODE. This
ODE takes the form

y′ + f(t)y = g(t), (2)

where f and g are continuous functions1. To solve this, consider the integrating factor
I(t) := exp(

∫ t
0
f(s)ds) (the 0 can be replaced with any other number; we really just want an

antiderivative of f , and the exponential of any such antiderivative works as an integrating
factor). Then notice that if y(t) solves Equation 2, we must have

d

dt
(I(t)y(t)) = I ′(t)y(t) + I(t)y′(t) = f(t)I(t)y(t) + I(t)y′(t) = I(t)g(t),

so

y(t) =
1

I(t)

(∫ t

0

I(s)g(s)ds+ C

)
.

Of course, we need to check that a y(t) of the above form indeed satisfies (2), so the above
formula for y(t) really is the general solution.

Example 2.2. We will solve y′ + 2ty = t. The integrating factor is exp(
∫

2tdt) = et
2
, and

so multiplying this to both sides, the ODE becomes et
2
y′ + et

2
2ty = tet

2
. The left-hand side

is then (et
2
y)′, so that

et
2

y =

∫ t

0

ses
2

ds =
1

2
et

2

+ C.

Hence y(t) = 1
2

+ Ce−t
2

is the general solution.

1This is called linear because it can be written as L(y) = g(t), where L is the linear differential operator
y 7→ dy

dt + fy. By linear, we mean that L respects addition and scalar multiplication; i.e. that L(f + g) =
L(f) +L(g) for functions f and g, and cL(f) = L(cf) for scalars c. You’ll learn more about linear maps and
operators in Math 54/56/110—these are very very important.
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2.1 Applications of first-order ODEs

Let’s discuss some applications of first-order ODEs. Consider a family of curves given by
f(x, y, k) = 0, where f is a fixed function and k varies (e.g. f(x, y, k) = x2 + y2 − k2, so the
curves are circles with center 0 and radius k). We can ask for an orthogonal trajectory to
this family, i.e. a single curve that intersects all curves in the family orthogonally. Recall
that two curves given implicitly by (x, c1(x)) and (x, c2(x)) intersect orthogonally at (a, b) if
dc1
dx

= − 1
dc2
dx

at (a, b). That is, the tangent lines of the two curves at (a, b) have slopes that

are negative reciprocals of each other.

Example 2.3. We will find an orthogonal trajectory to the family of curves given by x2 +
2y2 = k. By implicit differentiation, we have 2x + 4y dy

dx
= 0, so that dy

dx
= − x

2y
. Therefore

we want to find a function y such that y′(x) = 2y
x

. This is separable, so with 1
2y
dy = 1

x
dx,

integrate both sides and obtain log(y)
2

= log(x) + C ′ where C ′ is the constant of integration.
So our orthogonal trajectory is y = Cx2 (for any constant C).

A mixing problem is another typical application. In these types of problems, a solution
of some substance (usually salt in water) is being poured into a tank of the same substance
at some rate, and at the same time the solution in the tank is being continuously mixed and
drained at some other rate. The goal is usually to determine how much substance is in the
tank at some time t.

The key principles are as follows:

� If x is the amount of substance in the tank, the change dx
dt

is equal to the inflow of the
substance minus the outflow of the substance.

� The outflow rate of the substance is equal to

Amount of substance in the tank

Total volume of solution
·Outflow rate of solution.

Example 2.4. A very large tank initially contains 100 pounds of salt dissolved in 600 gallons
of water. Starting at time t = 0, water that contains 0.5 pound of salt per gallon is poured
into the tank at a constant rate of 4 gal/min and the (well-mixed) mixture is drained from
the tank at a rate of 3 gal/min. We ask how much salt is in the tank after 10 minutes.

Let x(t) be the amount of salt in the tank at time t. The inflow of salt is 2 lb/min, since
solution containing 0.5 lb of salt/gallon comes in at the rate of 4 gal/min. The outflow is
x

600+t
· 3, since there is 600 + t total gallons of solution after t minutes (as solution flows in at

4 gal/min and out at 3 gal/min), and it drains from the tank at a constant rate of 3 gal/min.
Therefore our ODE is

dx

dt
= 2− 3x

600 + t
.
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This is a linear ODE with integrating factor exp
(∫

3
600+t

dt
)

= (600 + t)3, so multiplying this
to both sides, the ODE becomes

(600 + t)3x′ + 3(600 + t)2x = 2(600 + t)3.

The left-hand side is ((600 + t)3x)′, and so we have

x(t) =
1

2
(600 + t) +

C

(600 + t)3
.

The initial condition is x(0) = 100, so that C = −43200000000, and x(10) ≈ 114.6757.

Finally, there are various population growth and predator-prey models that are given in
terms of first-order ODEs. For example, there is a natural growth model P ′ = kP where
k > 0 is some constant, which represents a population that grows at a rate proportional to
its size. The solution is visibly P (t) = Cekt for initial condition P (0) = C. There is also
a logistic growth model given by the model P ′ = kP

(
1− P

M

)
, where k > 0 as before, and

M > 0 is a constant representing the carrying capacity of the environment (basically the
maximum population the environment can sustain, which is a more realistic model). This is
a separable ODE, and it is a good exercise to solve it.

As for the predator-prey model, the one you should know is the Lotka-Volterra model,
which is a system of differential equations

dR

dt
= kR− aRW, dW

dt
= −rW + bRW.

Here k, a, r, b are positive constants, R (rabbits) is the prey population, and W (wolves) is the
predator population. These equations are more useful for approximate modeling purposes,
and cannot be solved (unless you get very lucky with the constants k, a, r, b). On the other
hand, you should be able to find the equilibrium solutions of the system (an easy algebra
exercise) as well as find dW

dR
(given by dW

dt
divided by dR

dt
).

3 Second-Order ODEs

We will exclusively study linear second-order ODEs, which have the form

a(t)y′′ + b(t)y′ + c(t)y = g(t), (3)

where a, b, c, t are continuous functions of t.
We will distinguish the case when g(t) ≡ 0, which is the homogeneous case, versus

all other non-homogeneous cases. Homogeneous second-order linear ODEs have very nice
solutions due to the following theorem:
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Theorem 3.1. Supposing a(t) is never 0 (so the ODE is always second-order and doesn’t
degenerate to a lower order), if y1(t) and y2(t) are linearly independent solutions of

a(t)y′′ + b(t)y′ + c(t)y = 0,

then every solution of this ODE is given by some linear combination y(t) = c1y1(t) + c2y2(t)
for constants c1, c2.

Note that by linearly independent solutions, we mean that y1(t) and y2(t) are not scalar
multiples (in particular, neither is identically 0, since 0 is a scalar multiple of any function).
Also note that this theorem is only true when the ODE is homogeneous (why?).

It is still very hard to solve second-order ODEs, so we will focus on the case when
a(t), b(t), c(t) are constants. Then in the homogeneous case, the ODE reduces to

ay′′ + by′ + cy = 0. (4)

We will always assume that a 6= 0.
To solve this, consider the auxiliary polynomial ax2 + bx + c = 0. This is a quadratic

with two real roots r1 and r2 (case 1), a repeated real root r (case 2), or two complex roots
α± βi that are conjugates. Then:

Theorem 3.2. The general solution to Equation 4 is given by:

1. y(t) = c1e
r1t + c2e

r2t in case 1.

2. y(t) = c1e
rt + c2te

rt in case 2.

3. y(t) = eαt(c1 cos(βt) + c2 sin(βt)) in case 3.

Each case of this theorem can be proved by showing that er1t and er2t (resp. ert and tert,
eαt cos(βt) and eαt sin(βt)) are linearly independent solutions when the auxiliary polynomial
satisfies case 1 (resp. case 2, case 3), and then applying Theorem 3.1.

For a second-order ODE, we need to give two initial conditions to determine a unique
solution, because we take two derivatives. The two initial conditions may take the form of
y(t0) = y0, y(t′0) = y′0 for a fixed time t0, which gives an initial value problem, or the form
y(t0) = y0, y(t1) = y1 for two different times t0, t1, which gives a boundary value problem
(BVP). These conditions determine the values of c1 and c2 much as before (plug in the initial
conditions and solve a system of equations if necessary).

We now return to non-homogeneous ODEs, but still with constant coefficients. Now our
ODE is of the form

ay′′ + by′ + cy = g(t) (5)
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with a 6= 0. The method to solve this, which is the general heuristic for solving linear
ODEs2, is to first solve the homogenized ODE ay′′ + by′ + cy = 0, obtaining a general
solution yc(t) (remember this is a whole family of solutions). Then, if we can somehow figure
out a single particular solution yp(t) to Equation 5, then the general solution is given by
y(t) = yp(t) + yc(t).

Exercise 3.3. Prove the statement in the previous sentence.

So the difficulty boils down to finding a particular solution yp. There are two main ways
to do this: the method of undetermined coefficents and variation of parameters.

For the method of undetermined coefficients, the idea is to strategically guess the form of
the particular solution yp, depending on what g looks like. This form will contain coefficients
that we can solve for via the given ODE. A rather comprehensive table of guesses to make
for yp (lifted from https://en.wikipedia.org/wiki/Method of undetermined coeffic

ients) is below:

The table should be read as follows: if g(x) (using x instead of t as the independent
variable) has the form of a function in the left column, the guess for yp should have the
corresponding form in the right column.

Example 3.4. Let’s solve the IVP

y′′ − 4y′ − 12y = te4t, y(0) = 0, y′(0) = 0.

2This is more of a statement about linear algebra than about differential equations.

https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients
https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients
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The first order of business is to write down the general solution for the homogeneous equation
y′′ − 4y′ − 12y = 0. The auxiliary polynomial has roots 6 and −2, so the general solution is
yc(t) = c1e

6t + c2e
−2t.

It remains to make a guess to find the particular solution yp. The function g(t) = te4t

falls under the last row in the preceding table (with the cos(bx) term being 1; b = 0), so our
guess should have the form (At+B)e4t. Plugging this guess for y into the ODE, we get

e4t(16At+ 16B + 8A)− 4e4t(4At+ 4B + A)− 12e4t(At+B) = te4t.

Cancelling e4t from both sides and simplifying, we get

−12At+ (4A− 12B) = t.

Equating coefficients tells us that −12A = 1 ⇒ A = − 1
12

, and 4A − 12B = 0 ⇒ B = − 1
36

.
Therefore a particular solution is yp(t) = e4t

(
− t

12
− 1

36

)
, and so the general solution is

y(t) = yp(t) + yc(t) = e4t
(
− t

12
− 1

36

)
+ c1e

6t + c2e
−2t.

We now need to use the initial conditions. That y(0) = 0 tells us that − 1
36

+ c1 + c2 = 0.
Next, y′(0) = 0 gives

6c1 − 2c2 −
7

36
= 0.

We get a = 1
32

and b = − 1
288

, so the solution to the IVP is

y(t) = e4t
(
− t

12
− 1

36

)
+

1

32
e6t − 1

288
e−2t.

One caveat with the method of undetermined coefficients occurs in the case where the
function we want to guess for our particular solution has terms appearing in the homogeneous
general solution yc(t). In this case, we need to multiply by a sufficiently large power of t
in order to make the particular solution independent from anything that appears in the
homogeneous solution. As an example, suppose yc(t) = c1e

t + c2te
t. Then the guess for

yp(t) cannot have the form (At + B)et, since both Atet and Bet appear as terms in the
homogeneous solution. It cannot be of the form (At2 + Bt)et either, since Btet appears as
a term in the homogeneous solution. On the other hand, going up one degree higher to
(At3 +Bt2)et works as a guess for yp.

Example 3.5. We will find a particular solution to the ODE

y′′ + y′ − 2y = et.
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Note that the homogeneous equation y′′ + y′ − 2y has general solution c1e
−2t + c2e

t, so our
guess for the form of yp, which we want to be Aet, must in fact be Atet upon multiplying by
a sufficiently large power of t (t1 = t works). The point is that Atet is (linearly) independent
from functions of the form c1e

−2t + c2e
t. Now we can proceed as before to find A: with Atet

in place of y, we want to solve

A(t+ 2)et + A(t+ 1)et − 2Atet = et,

so that et(3A) = et. Therefore A = 1
3
, so a particular solution is yp(t) = tet

3
.

We now discuss the variation of parameters. The idea is as follows: using the homo-
geneous solution yc = c1y1 + c2y2, where y1 and y2 are linearly independent solutions, we
suppose that yp has the form u1y1 + u2y2, where u1 and u2 are functions of t that we will
determine using our ODE. Then

y′p = (u′1y1 + u′2y2) + (u1y
′
1 + u2y

′
2).

We now set u′1y1 + u′2y2 = 0 in order to make calculations simpler; the hope is that this
condition will always be satisfiable in the end. We then have

y′′p = u′1y
′
1 + u′2y

′
2 + u1y

′′
1 + u2y

′′
2 ,

and so Equation 5 tells us that we want

a(u′1y
′
1 + u′2y

′
2 + u1y

′′
1 + u2y

′′
2) + b(u1y

′
1 + u2y

′
2) + c(u1y1 + u2y2) = g.

The left-hand side can be rearranged as

u1(ay
′′
1 + by′1 + cy1) + u2(ay

′′
2 + by′2 + cy2) + a(u′1y

′
1 + u′2y

′
2) = g,

and since y1, y2 solve the homogenized ODE, we conclude that it is equivalent to impose the
condition a(u′1y

′
1 + u′2y

′
2) = g.

The upshot is that we need to solve the following system of equations:

u′1y1 + u′2y2 = 0, a(u′1y
′
1 + u′2y

′
2) = g (6)

for functions u1, u2. It turns out that this system can always be solved for u′1 and u′2
3.

Once that’s done and we integrate u′1 and u′2, we will have obtained a particular solution
yp = u1y1 + u2y2.

3Look up the Wronskian—the point is that it is always nonzero. You’ll need more linear algebra knowledge
to appreciate why this is important—see https://math.berkeley.edu/~bsun/docs/Diffeq.pdf.

https://math.berkeley.edu/~bsun/docs/Diffeq.pdf
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Example 3.6. We will find a particular solution of the ODE

y′′ − 2y′ + 5y = (t+ 1)et cos(2t).

The general solution to the homogenized equation is yc(t) = et(c1 cos(2t) + c2 sin(2t)), so
using the method of undetermined coefficients would be very painful (try it for yourself).
We will therefore use variation of parameters with y1(t) = et cos(2t), y2(t) = et sin(2t).
Skipping directly to the system (6), we want to solve

u′1e
t cos(2t)+u′2e

t sin(2t) = 0, u′1e
t(cos(2t)−2 sin(2t))+u′2e

t(sin(2t)+2 cos(2t)) = (t+1)et cos(2t).

Cancelling et everywhere, this is equivalent to

u′1 cos(2t) + u′2 sin(2t) = 0, u′1(cos(2t)− 2 sin(2t)) + u′2(sin(2t) + 2 cos(2t)) = (t+ 1) cos(2t),

and since u′1 cos(2t) + u′2 sin(2t) = 0, the second equation above reduces to

−2u′1 sin(2t) + 2u′2 cos(2t) = (t+ 1) cos(2t).

Multiplying the first equation by 2 sin(2t) and the second by cos(2t) gives the system

2u′1 sin(2t) cos(2t) + 2u′2 sin2(2t) = 0, −2u′1 sin(2t) cos(2t) + 2u′2 cos2(2t) = (t+ 1) cos2(2t),

so adding these equations together gives

2u′2 = (t+ 1) cos2(2t).

Therefore u′2 = t+1
2

cos2(2t), and so u′1 = − t+1
2

sin(2t) cos(2t). Hence a particular solution is

yp(t) = −
(∫

t+ 1

2
sin(2t) cos(2t)

)
et cos(2t) +

(∫
t+ 1

2
cos2(2t)

)
et sin(2t),

where the integrals mean that we just pick any antiderivative of the integrand.

Note that on a test, you should actually carry out and simplify the integrals that arise
(but they should be easier to do).

3.1 Applications of second-order ODEs

We also need to discuss some applications of second-order ODEs. These will often come in
the context of spring motions. Using some physics knowledge (which I don’t really know
how to explain), we model the motion of a mass on a damped (massless) spring as

mx′′ + cx′ + kx = 0, (7)
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where x(t) is a function of the position of the spring (with respect to its equilibrium/resting
position) in terms of time t, m > 0 is the mass of object, c > 0 is a damping constant (will be
given to you), and k > 0 is the spring constant. The spring constant k can be calculated by
force divided by displacement length (displacement from the resting position). For instance,
if a spring has a natural length of 1 meter, and a force of 30N is required to stretch it to a
length of 2 meters, the spring constant is k = 30

2−1 = 30.
The cases where the discriminant c2 − 4mk of the auxiliary polynomial is negative, 0, or

positive correspond to the underdamped, critically damped, and overdamped cases respec-
tively.

Example 3.7. Suppose we have a spring with a natural length of 1 meter, and a force
of 30N is required to stretch it to a length of 2 meters. Now, we’ll attach a 5kg mass to
the spring, stretch it to 1.5 meters, and release it with 0 velocity inside a tank of water
with damping constant c = 10. To set up the second-order IVP modeling this situation, we
calculate k = 30 as above. Then our ODE is

5x′′ + 10x′ + 30x = 0.

The initial conditions are x(0) = 0.5, because the spring starts from 1.5 − 1 = 0.5 meters
past its equilibrium position, and x′(0) = 0, since the spring is released with 0 velocity (note
that the time derivative of the position function x(t) gives velocity). From this information,
we can then solve the IVP for the motion of the spring.

We could also add an external force F (t) to the spring, in which case the right-hand side
of the ODE (7) becomes F (t):

mx′′ + cx′ + kx = F.

All of these ODEs can be solved using previously mentioned techniques.

4 Series Solutions

The final topic of the unit, and of the semester, is about series solutions to ODEs. These
are quite useful, because there is often no closed-form formula (in terms of functions you
know) to many ODEs. Even very simple-looking ODEs like y′ = ln(y) cannot be solved in
elementary terms.

The point of a series solution is that we first assume that the solution of an ODE has a
series expansion about some initial time t = t0. Plugging in this putative series solution into
the ODE, we will get a recursion for the coefficients in our series solutions, which should
enable us to solve for the series in terms of the initial coefficients. This should at least give
us a solution to our ODE on an interval about t0, and if we are lucky, the series solution
will extend to larger intervals (i.e. the series will have infinite radius of convergence). As
proof-of-concept:
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Example 4.1. We will find the general solution for the ODE y′ = y. Of course, we know
that the general solutions look like y(t) = c0e

t where c0 is some constant, but let’s solve this
using series.

Assume we have a series expansion
∑∞

n=0 cnt
n for the solution. Then the condition y′ = y

forces
∞∑
n=0

cn+1(n+ 1)tn =
∞∑
n=0

cnt
n,

so that cn+1(n + 1) = cn for all n ≥ 0. It is then easy to see that cn = c0
n!

for all n ≥ 0, so
that the solution must be

∞∑
n=0

c0
n!
tn = c0

∞∑
n=0

tn

n!
.

But we recognize the final series as et (valid for all t, not just t near 0), so that a solution
must be of the form c0e

t. Of course, such functions are indeed solutions to the ODE y′ = y.

Notice, in the above example, how the constant of integration came out from the validity
of the recursion not depending on the value of c0. Of course, if we specified an initial
condition for y(t), this would determine the value of c0, just like before.

Let’s do a more involved example, involving an ODE that we don’t know how to solve
via other techniques.

Example 4.2. We will solve the IVP

(t2 − 1)y′′ + 6ty′ + 4y = −4, y(0) = 0, y′(0) = 1.

Notice that none of our previous methods apply to this ODE. So we will assume that the
solution can be written as y(t) =

∑∞
n=0 cnt

n. We then have

y′′ =
∞∑
n=0

cn+2(n+ 2)(n+ 1)tn

and

y′ =
∞∑
n=0

cn+1(n+ 1)tn,
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so we want

−4 = (t2 − 1)

(
∞∑
n=0

cn+2(n+ 2)(n+ 1)tn

)
+ 6t

(
∞∑
n=0

cn+1(n+ 1)tn

)
+ 4

(
∞∑
n=0

cnt
n

)

=

(
∞∑
n=0

cn+2(n+ 2)(n+ 1)tn+2

)
−

(
∞∑
n=0

cn+2(n+ 2)(n+ 1)tn

)

+

(
∞∑
n=0

6cn+1(n+ 1)tn+1

)
+

(
∞∑
n=0

4cnt
n

)

=

(
∞∑
n=2

cnn(n− 1)tn

)
−

(
∞∑
n=0

cn+2(n+ 2)(n+ 1)tn

)
+

(
∞∑
n=1

6cnnt
n

)
+

(
∞∑
n=0

4cnt
n

)

= −2c2 − 6c3t+ 6c1t+ 4c0 + 4c1t+
∞∑
n=2

(cn(n2 − n)− cn+2(n
2 + 3n+ 2) + cn(6n) + 4cn)tn

= (4c0 − 2c2) + (10c1 − 6c3)t+
∞∑
n=2

(cn(n2 + 5n+ 4)− cn+2(n
2 + 3n+ 2))tn.

Upon equating coefficients, we find that we need

4c0 − 2c2 = −4, 10c1 − 6c3 = 0,

and
cn(n2 + 5n+ 4)− cn+2(n

2 + 3n+ 2) = 0

for all n ≥ 2. Since n2 + 5n+ 4 = (n+ 1)(n+ 4) and n2 + 3n+ 2 = (n+ 2)(n+ 1), it follows
that we need cn(n+ 4)− cn+2(n+ 2) = 0 for all n ≥ 2, so we have a recursion

cn+2 = cn
n+ 4

n+ 2
.

Notice that c2 = 2c0 + 2, so that c4 = 6c2
4

= 3c0 + 3, c6 = 8c4
6

= 4c0 + 4, and in general
c2n = (n + 1)(c0 + 1) for n ≥ 1. Similarly, we have c3 = 5c1

3
, so that c5 = 7c3

5
= 7c1

3
,

c9 = 9c3
7

= 9c1
3

, and in general c2n+1 = (2n+3)c1
3

for n ≥ 1. Therefore our general solution
about 0 is

y(t) =
∞∑
n=0

cnt
n =

∞∑
n=0

c2nt
2n+

∞∑
n=0

c2n+1t
2n+1 = c0+

∞∑
n=1

(n+1)(c0+1)t2n+c1t+
∞∑
n=1

(2n+ 3)c1
3

t2n+1.

Since y(0) = c0 and y′(0) = c1, it follows that c0 = 0 and c1 = 1, so the IVP solution is

y(t) =
∞∑
n=1

(n+ 1)t2n + t+
∞∑
n=1

2n+ 3

3
t2n+1 = t+ 2t2 +

5

3
t3 + 3t4 +

7

3
t5 + 4t6 + . . . .
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